mg/100g), phosphorous (213.46 mg/100g), magnesium (208.00 mg/100g) and sodium (31.00 mg/100g) contents of *Vigna* species.

Keywords: Legumes; *Vigna unguiculata*; Nutritional components; Minerals

C11 Development of Salinity Tolerant “Pusa Basmati 1” through Marker Assisted Transfer of ‘Saltol’, A Major QTL for Seedling Stage Tolerance

Division of Genetics, Indian Agricultural Research Institute, New Delhi - 110012.
E-mail: sonal.chaudhary89@gmail.com

Salinity is considered as one of important abiotic stress influencing rice production. Sensitivity of rice to salinity stress varies with the growth stage. In general, rice plants are very sensitive to salinity stress at young seedling stages and less so at reproduction. Incorporation of seedling stage salinity tolerance in rice is important for crop establishment. Pusa Basmati 1 is an elite popular Basmati rice variety, which is highly susceptible to salinity stress. Marker assisted backcross breeding was employed to incorporate ‘Saltil’, a major QTL for seedling stage salinity tolerance into the genetic background of Pusa Basmati 1, by using an elite improved genotype of Pusa Basmati 1121 carrying Saltil as donor. Foreground selection for Saltil QTL was carried out using linked marker, RM10793 and background selection was done using SSR markers spanning across the rice genome. Further, foreground selection was coupled with rigorous phenotypic selection for agronomic, grain and cooking quality traits, to accelerate the recurrent parent phenotype recovery. Eighteen superior BC$_2$F$_2$ plants homozygous for saltil locus with salinity tolerance were identified in the background of Pusa Basmati 1 with agronomic, grain quality and cooking quality traits performance on par with the Pusa Basmati 1. These improved lines along with susceptible check and parents were artificially screened for salinity tolerance at seedling stage using hydroponics under controlled condition. Over all the improved lines showed higher tolerance level to seedling stage salinity stress under hydroponics.

C12 Assessing the Effect of Gibberellic Acid Presoaking Treatment on Growth, Flowering and Yield Attributes of *Gladiolus*

Pooja Rani*, Nisha Kataria, Narender Singh and Muzafar Hussain Dar
Department of Botany, Kurukshetra University, Kurukshetra-136119, India
E-mail: poojabishan@gmail.com

A field study entitled “Assessing the effect of Gibberellic acid presoaking treatment on growth, floral and yield attributes of *Gladiolus*” was conducted in a randomized block design in Department of Botany, Kurukshetra University, Kurukshetra during 2012. Bulbs were procured from the Indian Agricultural Research Institute, New Delhi. Four concentrations of gibberellic acid viz. 0, 50, 100 and 150 ppm were used as presoaking treatment. Growth measurements